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Abstract

The disappearance of Malaysia Airlines flight MH370 on the morning of the 8 March
2014 is one of the great mysteries of our time. Perhaps the most relevant aspect of this
mystery is that not a single piece of debris from the aircraft has been found. Difficulties
in the search efforts, due to the uncertainty in the plane’s final impact point and the time5

that has passed since the accident, bring the question on how the debris has scattered
in an always moving ocean, for which there are multiple data sets that do not uniquely
determine its state. Our approach to this problem is based on the use of Lagrangian
Descriptors (LD), a novel mathematical tool coming from dynamical systems theory
that identifies dynamic barriers and coherent structures governing transport. By com-10

bining publicly available information supplied by different ocean data sources with these
mathematical techniques, we are able to assess the spatio-temporal state of the ocean
in the priority search area at the time of impact and the following weeks. Using this
information we propose a revised search strategy by showing why one might not have
expected to find debris in some large search areas targeted by the Australian Maritime15

Safety Authority (AMSA), and determining regions where one might have expected
impact debris to be located and that have not been subjected to any exploration.

1 Introduction

The fate of Malaysia Airlines flight MH370 has been a mystery since its disappearance
on the morning of the 8 March 2014. An analysis of radar data, aircraft performance cal-20

culations and satellite communication (SATCOM) system signaling messages placed
the aircraft over an arc, the 7th arc, in the southern part of the Indian Ocean (ATSB,
2014a), where the aircraft’s fuel was, presumably, exhausted. Refinements to the anal-
ysis of both the flight and satellite data have been continuous since the loss of MH370
and have resulted in the definition of several potential impact regions along the 7th arc,25

driving the search efforts to consider different search areas.
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The events determining the plane’s fate after the crash were undoubtedly affected
by the manner in which the impact occurred, since this should have determined the
nature of the breakup of the plane into pieces of debris. A recent study by Chen et al.
(2015) has conjectured that the plane’s impact was under conditions in which no debris
was produced and therefore no plane pieces could have been found by the search5

services. The search services, however, accepted that after the plane’s disappearance,
debris should have been produced and began one of the most challenging searches in
aviation history. During several months a surface search was conducted that implicitly
assumed the presence of floating debris. It was not until October 2014 that the much
more demanding underwater search was started. It is hard to know what should be the10

properties of the debris produced after the impact, and some aspects in this respect are
discussed by Chen et al. (2015). Given the highly speculative status of all the events
related to Malaysia Airlines flight MH370, in this work we will assume the presence of
fuselage pieces similar to those recovered from the Air France Flight 447 flight, (see
http://www.aviationlawmonitor.com/tags/air-france-flight-447/) which consisted of thin,15

flat, half submerged structures, or personal flotation devices, which potentially would
have been driven mainly by ocean currents. Under these assumptions – which are
consistent with the plan and actions taken by the search services – it is then clear
that it is important to understand the nature of the ocean currents in the impact area
(Saab, 2014) at the time of disappearance and thereafter, and to then determine how20

they contributed to debris dispersion. We will assume that it is reasonable to relate
the evolution of the described potential debris with that of surface drifters, such as
those distributed by the Global Drifters Program (GDP), and for this reason, in order to
support our study, we will benchmark our conclusions with these drifters tracks.

Differences between the forecasted velocity fields are a handicap for the analysis of25

particle dispersion, and therefore having a good representation of the ocean circulation
patterns becomes crucial for dispersion studies (Mendoza et al., 2014; Griffa et al.,
2013; Haza et al., 2007). Mainly two type of data sources for oceanic currents are
available in oceanic contexts. One is obtained in almost real time after post-processing
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satellite altimetry, such as AVISO products, which provide mainly geostrophic currents.
Similar products integrating surface winds and/or Ekman dynamics are, for instance,
OSCAR and SCUD.

Alternatively, surface ocean currents can be provided by physics-based computa-
tional models which are solved on high-resolution meshes. These provide ocean cir-5

culation currents in space and time on the whole oceanic basin under study and, in
order to be representative of the ocean state, they usually assimilate AVISO data and
drifters and incorporate other important dynamics and measurements. Examples of
these models are the Hybrid Coordinate Ocean Model (HYCOM), or the Operational
Mercator global Ocean analysis and forecast system (provided by EU Copernicus).10

Typically these products provide high resolution space-time data sets but only in areas
of interest to the countries funding the consortia providing simulations. In this study the
focus is in the middle of the Indian Ocean, where only low resolution data is available.

This study is focused in the analysis of AVISO and HYCOM data predictions for
the region and period of interest. Our analysis utilizes fundamental ideas coming from15

dynamical systems theory applied to Lagrangian transport, which provide sharper in-
sights than the simple drifter tracking supplied by tools such as GNOME or SCUD. The
approach taken by the rescue services as described in ATSB (2014a) seems to be
closer to a simple drifter tracking approach, and no information is provided on the type
of velocity fields used.20

Dynamical systems theory contributes to this problem by realizing Poincaré’s idea
of seeking geometrical structures in the phase portrait (for this problem, the ocean
surface) that can be used to organize schematically regions corresponding to qualita-
tively different types of trajectories. These geometrical objects, the stable and unstable
manifolds of hyperbolic trajectories, also called Lagrangian structures, are expected to25

be robust with respect to slight perturbations of the velocity field. The main contribution
from this perspective is the consideration that the analysis of individual trajectories may
be misleading, and that the right approach to take is to observe the consistency of in-
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dividual trajectories with the dynamical barriers highlighted by the Lagrangian skeleton
of the velocity field.

Finding these structures in the context of geophysical flows is a dynamical systems
challenge, as these velocity fields are time dependent and only known on a finite time
data set. Their study requires the use of modern techniques in nonlinear dynamical5

systems theory that achieve a phase portrait representation for systems with these
characteristics. In this context many tools have been successful to this end and have
provided interesting insights into oceanic problems. For instance, manifolds have been
approximated by computing ridges of fields, such as finite size Lyapunov exponents
(FSLE) (Aurell et al., 1997) succesfully applied into oceanic contexts (d’Ovidio et al.,10

2004; Kai et al., 2009) and finite time Lyapunov exponents (FTLE) (Nese, 1989; Shad-
den et al., 2005, 2009). Another perspective within the geometrical approach differ-
ent from Lyapunov exponents is that provided by distinguished hyperbolic trajectories
(DHT), a generalization of the concept of fixed point for dynamical systems with a gen-
eral time dependence (Ide et al., 2002; Ju et al., 2003; Madrid and Mancho, 2009),15

and their stable and unstable manifolds (Mancho et al., 2006c; Mendoza and Mancho,
2012). In this approach stable and unstable manifolds are directly computed as ma-
terial surfaces (Mancho et al., 2003, 2004). This method has also provided valuable
insight into oceanic problems (Mancho et al., 2006a; Mendoza et al., 2010). Other ap-
proaches in this field have been the geodesic theory of Lagragian Coherent Structures20

(LCS) (Haller and Beron-Vera, 2012), the variational theory of LCS (Farazmand and
Haller, 2012), the trajectory complexity measures (Rypina et al., 2011), mesohyperbol-
icity measures and ergodic partitions (Mezic and Wiggins, 1999; Mezic et al., 2010)
and transfer operator methods (Froyland et al., 2012; Froyland and Padberg-Gehle,
2014).25

A recent tool that reveals phase space structures of general time dependent dynam-
ical systems is the so-called function M, also referred to as Lagrangian Descriptors
(see for instance Mendoza and Mancho, 2010, 2012; Mancho et al., 2013), for which
several advantages have been discussed in Mancho et al. (2013), Rempel et al. (2013)
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and de la Cámara et al. (2012, 2013) vs. other classical approaches (Shadden et al.,
2005; Mezic and Wiggins, 1999). We illustrate the power of this proposed methodol-
ogy jointly with techniques based on contour advection (Dritschel, 1989; Mancho et al.,
2003) to reach conclusions regarding the fate of the plane debris in the weeks after the
accident.5

In this paper we analyze the transport processes arising from AVISO and HYCOM
velocity fields. In order to assess the performance (quality) of the ocean state data
for the time period and region under consideration we compute for each data set the
Lagrangian geometrical skeleton by means of the function M, which is then bench-
marked with GDP surface drifter tracks. We find that drifters remarkably follow the10

Lagrangian skeleton provided by AVISO data. HYCOM data presents high-frequency
motions, but still our Lagrangian techniques highlight mesoscale structures analogous
to those found in AVISO. By combining contour advection of the presumed impact ar-
eas and the geometrical skeleton of the underlying flow we note the presence of ocean
mesoscale structures, which could have acted as barriers for the debris. Additionally15

it is observed that the impact area evolves in such a way that it fills quiet ocean re-
gions, suggesting that they are a very likely destination for the debris. Interestingly,
our Lagrangian analysis reaches conclusions that could have guided the search tasks:
it highlights regions disregarded by the search efforts, where debris could have been
found, and points out that debris could scarcely have visited certain regions subjected20

to intense search.
The structure of this article is as follows. Section 2 describes the data used in this

study. Section 3 describes and discusses the approach to the debris dispersion. Sec-
tion 4 provides the results and the discussion. Finally, Sect. 5 provides the conclusions.

2 Data25

The first data source of velocity fields used for this work has been obtained from satel-
lite altimetry produced by Ssalto/Duacs and distributed by AVISO, with support from
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CNES, and are downloadable from http://www.aviso.oceanobs.com/duacs/. In particu-
lar we have considered the product UPD, which is reconstructed from four satellites.
The data are given on a spatial grid of 1080×915 points (longitude/latitude). The lat-
itude ranges from 82◦ S to 81.9746◦N using a Mercator projection, and the longitude
ranges from 0 to 359.667◦ using a uniform grid. The spatial precision is thus 1/3◦ at5

the Equator and is provided with daily frequency. AVISO data essentially reproduces
geostrophic currents. A priori, the convenience of using this type data for our study is
supported by work discussed in Olascoaga et al. (2013) and Mendoza et al. (2014),
and eventually is confirmed by the results reported in the discussion section.

A second source used for the velocity fields is the Hybrid Coordinate Ocean10

Model (HYCOM) (Bleck, 2002; Chassignet et al., 2007), which provides velocity
fields throughout the entire ocean depth. This model assimilates satellite sea-surface
height and temperature data by means of the Navy Coupled Ocean Data Assimilation
(NCODA) system and it is forced by surface winds and air-sea fluxes. In particular,
we have considered the GLBa0.08 data set (experiments expt_91.0 and expt_91.1),15

which can be downloaded from http://hycom.org/dataserver/glb-analysis/. These ex-
periments use 32 layers along the vertical coordinate and are carried out over a global
Mercator curvilinear grid for the ocean, where latitude ranges from 78◦ S to 47◦N and
the equatorial resolution is 1/12◦, resulting in a grid point spacing of approximately
7 km on average. Regions north of 47◦N are represented with a bipolar patch. The20

data is provided daily.
HYCOM data incorporates several physical factors that introduce high-frequency

variability, and produce velocity fields that, at least in the very upper layers, are far
from geostrophy. In the next section we will discuss issues of finite resolution and noise
effects in relation to the debris dispersion problem. In the calculations performed we25

attempt to filter the high-frequency variability by using the HYCOM data layer at 50 m
depth. A similar depth choice for this model is used, for instance, in Sulman et al.
(2013) or for CUPOM (Colorado University Princeton Ocean Model) in Branicki and
Kirwan (2010). In the latter work the authors show how the resulting Lagrangian struc-
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ture is close to 2-D surfaces that extend nearly vertically into the water column. The full
3-D Lagrangian structures can be obtained by a vertical extension of the evolving sta-
ble and unstable manifolds calculated in the 2-D plane, but this is valid only throughout
a layer whose thickness depends on the ratio of the characteristic velocity within the
2-D slice to the characteristic vertical shear of the horizontal velocities (Branicki and5

Kirwan, 2010; Branicki et al., 2011). We confirm that this is the case in our study.
Finally, in order to benchmark the Lagrangian structures calculated for the veloc-

ity field data sets described above, surface drifter tracks are obtained from data dis-
tributed by the Global Drifters Program (GDP), from the National Oceanic and Atmo-
spheric Administration (NOAA) and Atlantic Oceanographic and Meteorological Labo-10

ratory (AOML). These tracks can be downloaded from http://www.aoml.noaa.gov/phod/
dac/index.php. Each drifter has an identification number with five digits, which allows
for the identification of different drifters. The sampling of the drifter position is once
every 6 h.

3 Modelling debris dispersion15

The debris produced after a plane’s accident is due to the breakup of the plane and
it depends on how it enters the water. Large heavy and unbroken pieces of fuselage
would sink rapidly. However, there exist reports of plane accidents (Chen et al., 2015)
which produced debris spread over a wide area, with light pieces that might have
floated for a long time. This article, as described in the Introduction, is focused on20

the search for this type of debris, such as flat wide objects not surpassing the water-
line, and thus not subjected to wind sailing effects, that would have been mainly driven
by ocean currents. We will assume a similarity between this debris and drifter motion.

Kuznetsov et al. (2002) have examined the role played by Lagrangian structures ob-
tained in the Gulf of Mexico. In particular, they have analyzed data from the Colorado25

University Princeton Ocean Model and have compared the geometry of the dynamics
with simultaneous trajectories of drifters measured in an independent way. Indirectly,
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the agreement between drifter evolution and the Lagrangian patterns of purely ad-
vected particles has served as a confirmation of the model quality. Also, Beron-Vera
et al. (2010) compares the quality of two different altimetry AVISO products based on
the agreement between a drifter trajectory and the Lagrangian skeleton supplied by the
FTLE.5

Recent studies (Tallapragada and Ross, 2008; Beron-Vera et al., 2015) have con-
sidered deviations in the evolution of drifters from that of purely advected particles by
taking into account inertial effects produced by the buoyancy of the object and their fi-
nite size. Their approach considers the Maxey–Riley equation (Maxey and Riley, 1983)
which holds for small rigid spheres. Considering the diversity of potential shapes for10

the debris objects, and that mainly we are considering flat, wide objects, quite different
from a sphere, we do not consider this approach in our study. We disregard this choice
because it is at least as speculative as the straightforward Lagrangian approach for
purely advected particles, and for this reason the latter is the one we take. In the end,
the agreement found between the GDP drifters tracks and the mesoscale features that15

our tools highlight supports this decision. In this way we consider the motion of the
airplane debris as that of purely advected particles. Such particles follow trajectories
x(t) in the ocean that evolve according to the dynamical system:

dx
dt

= v(x(t),t) (1)

where v(x(t),t) is the velocity field of the ocean region of interest. In our analysis, as20

previously explained, we will assume that the motion of particles is mainly horizontal.
The equations of motion that describe the horizontal evolution of particle trajectories
on a sphere of radius R are:

dλ
dt

=
u(λ,φ,t)
R cosφ

, (2)

dφ
dt

=
v(λ,φ,t)

R
. (3)25
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Here the variables (λ,φ) are longitude and latitude, u and v respectively represent the
eastward and northward components of the velocity field provided by the data set.

For our Lagrangian analysis, which is based on Lagrangian Descriptors (function
M) and also on contour evolution, it is necessary to integrate Eqs. (2) and (3) in or-
der to compute particle trajectories. As the velocity field for the system (Eqs. 2 and 3)5

is provided solely on a discrete space-time grid, the first issue to deal with is that of
interpolation. We have used bicubic interpolation in space and third order Lagrange
polynomials in time according to the details given in Mancho et al. (2006b) and Men-
doza et al. (2014). This assumes smoothness of the velocity field below the resolution
which, on the other hand, is rather low.10

An open question here is how robust are Lagrangian techniques when dealing with
ocean motions that do not vary smoothly at small scales, as those having an inherent
turbulent nature. Recent work by Hernández-Carrasco et al. (2011) analyze this ques-
tion by looking at the impact on FTLE of the two major effects when dealing with real
data, namely, noise and dynamics of unresolved scales. Their work concludes that,15

although some features are lost, this tool still gives an accurate picture of the oceanic
transport properties. We take these conclusions as supportive of our assumptions in
the interpolation scheme that we use. On the other hand, effects of high frequency vari-
ations on the velocity field are also included in the HYCOM data. In the last section we
will highlight common features between this and the more smooth AVISO data, which20

will support also the conclusions in Hernández-Carrasco et al. (2011).

4 Results and discussion

4.1 The Lagrangian skeleton

The global nature of particle trajectories generated by Eq. (1) can be understood
through the spatio-temporal template formed by geometrical structures of the flow that25

organize trajectories into distinct ocean regions, corresponding to qualitatively differ-
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ent types of trajectories. The boundaries or barriers between these regions are time
dependent material surfaces (which, mathematically, are invariant manifolds). Such
a spatio-temporal template can be constructed with the technique that is referred to as
Lagrangian Descriptors (LD), based on a function, function M (see Madrid and Man-
cho, 2009; Mendoza and Mancho, 2010; Mancho et al., 2013), defined as follows:5

M(x0,t0) =

t0+τ∫
t0−τ

||v (x(t),t)||dt. (4)

Here || || stands for the modulus of the velocity vector. At a given time t0, function
M(x0,t0) measures the arclength traced by the trajetory starting at x0 = x(t0) as it
evolves forwards and backwards in time for a time period τ. The structure of the function
M shows, at low τ values, a smooth pattern such as that visible in Fig. 1a. There, M10

has been evaluated for AVISO data, on the date of the plane crash and near one of
the search areas, using an integration period of τ = 5 days. On the other hand, Fig. 1b
(computed for τ = 20 days) illustrates how the structure ofM evolves for large τ towards
less regular structures. By this we mean that sharp changes of M values occur in
narrow gaps, forming filaments that highlight stable and unstable manifolds. A thorough15

explanation of this effect is discussed in (Mendoza and Mancho, 2010, 2012), Mancho
et al. (2013) and Lopesino et al. (2015). Figure 1c shows a different projection for
the latter case, which highlights the singular features of M aligned with stable and
unstable invariant manifolds, and their crossing in a hyperbolic point. We remark that
the information contained in these figures is obtained by means of integration of particle20

trajectories. In fact some of the figures reported in this article use tens of thousands
of them. The difference in this analysis with respect to that performed by the drifter
tracking approach taken by ATSB (2014a, b), or other tools such as GNOME or SCUD,
is the way in which this information is displayed. The latter tend to represent this output
as spaghetti diagrams, while our Lagrangian perspective finds geometrical structures25
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on the ocean surface, that are used to distinguish regions corresponding to qualitatively
different types of trajectories.

Large M values, represented in reddish colors, are related to regions of high speed
fluid (such as jets), while bluish colors denote calm regions. Figure 1d schematically
shows the manifold skeleton and how particles, such as drifters or plane debris would5

evolve in the neighborhood of this structure. Invariant manifolds are dynamic barriers
that cannot be crossed by purely advected particles and control transport in the region.
The cross point of the stable and unstable manifolds, the hyperbolic point, drastically
bends the trajectories. Tracer blobs evolve constrained by the manifold structure. Fig-
ure 1e illustrates this point by showing elongation of blob contours along the unstable10

manifold of a hyperbolic trajectory and squeezing along its stable manifold. It is impor-
tant to remark here that, from the dynamical system perspective, the main distortion
agents for the contours are those causing their filamentous shape and, as explained
here, these agents are the hyperbolic trajectories and their stable and unstable mani-
folds. Additionally, in the flow there exists regions dominated by trajectories with elliptic15

type stability, in which, contrary to what happens near hyperbolic trajectories, blobs re-
main coherent instead of forming filaments. This is illustrated in Fig. 1f. Oceanic eddies
are an example of regions displaying such a behaviour (see, e.g. Chelton et al., 2011)
and this is also the case for oceanic jets, in which blobs are transported at a high speed
but not distorted into filaments (see e.g. Wiggins and Mancho, 2014). Therefore, the in-20

terplay between stretching and confinement is an essential ingredient of fluid transport
processes.

In this work, the importance of how water masses evolve is clear because of the un-
certainty in the plane’s impact point, and thus, in order to reach conclusions on the fate
of the plane debris, it is important to track the time evolution of areas in which the plane25

potentially could have crashed, and recognize the constraints on these regions found in
the ocean during the period after the accident. The evolution of these areas is tracked
with the contour advection algorithm developed by Dritschel (1989), but including some
modifications explained in Mancho et al. (2003, 2004, 2006c).
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4.2 Analysis of the MH370 plane debris dispersion

The goal of this section is to analyze the search strategy followed by the Australian
Maritime Safety Authority (AMSA), in order to see if, in the light of the tools and data
described in the previous sections, alternative search strategies could have been sug-
gested.5

One of the major challenges in the first stages of the search was to know how debris
had scattered in an always moving ocean. On Tuesday 18 March and on Wednes-
day 19 March search areas were defined by AMSA according to possible flight paths
deduced from satellite and aircraft performance data which assumed impact points
along the 7th arc. The charts released by AMSA for the different surface search areas10

are available at http://www.amsa.gov.au/media/incidents/mh370-search.asp. Figure 2a
shows the potential flight paths in white, and the 7th arc in black. The presumable im-
pact area along the 7th arc is depicted in pink. Its width, which is at around 93 km,
expresses uncertainties in the impact point. Our discussion is based on this uncer-
tainty band, which was considered as the maximum priority in the reports by ATSB15

(2014a, b). However, we note that the satellite analysis also has highlighted a wider
search band around this narrower strip.

The search area released by AMSA during these days appears in the figure sur-
rounded by a dashed line. Moreover, the gray shaded contour shown in this figure rep-
resents the advection of the presumed initial impact area until the 19 March, according20

to ocean velocity data distributed by AVISO. This analysis thus suggests a smaller
search area than the one determined by AMSA for the search operations that took
place during the 18 and 19 March. However, one remaining question that needs to be
addressed in order to support this conclusion is, how accurate are AVISO data when
representing the true ocean state? We provide some discussion of this point in terms of25

the tools described in the previous subsection. We observe that the advected contour
stretches along unstable manifolds, which act as the main deforming agents for this
blob. Stable and unstable manifolds and eddies are recognized in the background of
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Fig. 2a by means of the function M. The dark blue regions represent calm ocean re-
gions and their presence is consistent with drifter motions. For instance, drifter 16545,
represented by a magenta dot on the 19 March, appears to be in one of these calm re-
gions, and consistently it barely moves. Video S1 confirms that this is the case from the
8 to the 20 March. Similarly, the movie confirms that the drifter 16539 placed in a zone5

further east, during the period running from the 20 March to the 27 March remains in
a blue calm region, scarcely moving, consistent with AVISO data. The agreement be-
tween AVISO data and drifter motions supports the adequacy of AVISO to accurately
describe the ocean motion.

Satellite imagery provided to AMSA on the 20 March revealed objects that could10

have been possible debris of the missing Malaysia Airlines flight MH370. Subsequently,
the search area was shifted 185 km to the south east of the original search area and
the search efforts were focussed in this area from the 20 to the 27 March. This new
search area is shown in Fig. 2b limited by a dashed line. The drifter 16539 is now the
closest to the new search area. The gray shaded contour represents the advection15

of the presumed initial impact area along the 7th arc until the 27 March 2014, and
the coloring at the background highlights for this day, by means of the M function, the
Lagrangian skeleton. The figure suggests that according to AVISO the debris of a plane
that crashed along the 7th arc could not have flowed to this region in this period of time,
and thus the objects detected in this area should have had a different origin.20

Figure 3a and b proceeds with a similar analysis to that of Fig. 2a and b, but using
HYCOM data instead. In the HYCOM simulations, layers near the surface are strongly
dominated by wind forcing and, as a result, the velocity fields are subjected to high
frequency variations. As explained in Sects. 1 and 2, our study assumes a similarity
between debris motion and that of drifters. Mancho et al. (2006a), Branicki and Kirwan25

(2010) and Sulman et al. (2013) justify the study of Lagrangian structures from velocity
fields by considering layers just below the very upper layers which are slightly wind
filtered. In Fig. 3a and b the background coloring shows 2-D Lagrangian structures
obtained at 50 m depth. The Lagrangian structures now are much more blurred than
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those obtained from AVISO, but still a comparison is feasible in terms of the mesoscale
structures highlighted by the M function. HYCOM shows mesoscale features linked
to the circumpolar current further spread into the north, and the calm region close to
drifter 16545 still seems to be present, but rather diffuse and displaced south of the
drifter. Figure 3a illustrates that the spreading of the presumed impact area is broader5

than that computed from AVISO data, but still smaller than the AMSA search area.
Further details are found in movie S2. The calm area in which drifter 16539 seemed to
be anchored, according to Fig. 3b, now appears as a more active region with diffuse
structures. However the HYCOM analysis likewise confirms that the debris of a plane
crashing along the 7th arc could have barely reached this region in this period of time.10

On the 28 March further refinements of the flight path shifted the search area up to
the north, and the newly determined most likely impact area was then the one depicted
in Fig. 4a ATSB (2014a) in the northeast direction above the Broken Ridge along the
7th arc. From the 28 March until the 3 April the search services were focused on the
area surrounded by the dashed line in Fig. 4a. The background coloring of this figure15

shows the Lagrangian structures obtained from the M function evaluated from AVISO
data on the 3 April 2014. The presumed initial impact area is advected until this day
and represented in the gray shaded region. Its filamented structures clearly tend to be
aligned along the unstable manifolds visible in the singular features of M. Numerous
drifters are represented with magenta dots and they move consistently with the high-20

lighted Lagrangian skeleton. This is further confirmed in the video S3. For instance
drifter 56566, which, on the day of the accident, is within a strong mesoscale struc-
ture, an oceanic eddy placed at the east of the presumed impact area, remains within
the eddy during several months, being transported with it towards the west. Similarly,
drifters 56947 and 56512 are trapped at some point in weaker eddies. Drifters 5655725

and 56502, navigate along stable or unstable manifolds during noticeable periods. The
latter drifter, which was placed very close to the presumed search area on the impact
day, remains close to the contour after this time interval.
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The strong eddy containing the drifter 56566, behaves like a capsule where sur-
rounding waters cannot penetrate. The advected gray shaded region deforms around
it, showing it is a forbidden region for the debris. On the 3 April, this large vortex in-
vaded the search area, and thus our analysis suggests that the region occupied by this
moving coherent structure could have been removed from the region where the search5

efforts were focused.
Another interesting mesoscale element in this area is the strong jet which crosses

the presumed impact area at the north end. The feature is visible in orange-reddish
colors and its presence is confirmed by the motion of drifter 56554 which navigates
towards the east between the 27 March until the 11 April. The jet persists since the10

impact day (the 8 March) until at least the end of May and as we will discuss below
is a dynamic barrier. It separates the blob located in the impact area into two pieces
which remain unmixed for the whole period of study, a small one at its north side and
the larger one at south side.

Between the 3 and the 11 April the search area was moved up to the north, to regions15

rather diverted from the probable impact area displayed in Fig. 4a. We ignore this part
and we pursue our discussion with the search targets held from the 12 to 28 April,
which are consistent with the impact area under consideration. The search areas after
the 12 April are reported by the Australian Government (see at http://www.jacc.gov.au/
media/releases/2014/april/index.aspx), and correspond to the regions surrounded by20

dashed lines in Fig. 4b. There, it is shown again the presumed impact area along the
7th arc, and the advection of this contour by the 15 April. From the background coloring
of the M function, we conclude that as time evolves the contour tends to form filaments
aligned with the unstable manifolds and accumulates into calm regions which gather
most of the material (see also the video S3). From the figure it is clear that most of25

the impact area has scattered into the calm region below the strong jet described in
the previous paragraph. Interestingly, this region was left out of the search area for this
period, and reversely the search area barely contains material coming from the impact
area. As time evolves the gray shaded contour evolves and penetrates more and more
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into the search panel at the right, but just at the south of the strong jet. We see that the
jet acts as a barrier which prevents most of the material of the likely impact area from
being transported towards the north, this had the effect of paradoxically concentrating
the main search in an area where, according to our analysis, there was likely no debris.

Figure 5a and b shows a similar analysis to that of Fig. 4a and b using HYCOM data5

at 50 m depth. Mesoscale structures in this data are consistent with those of AVISO.
For instance, the large eddy which isolates drifter 56566 is present in a similar position,
invading the search area from the 28 March to the 3 April, confirming again that this
part could have been excluded from the search. The jet structure splitting the impact
region in two is also present at the same position, although somewhat perturbed by10

wind effects. Similarly to AVISO, much of the material contained in the impact area
would evolve filling calm regions which, roughly speaking, are positioned the same.
The analysis of Fig. 5b is similar to that of Fig. 4b, and it says that, according to our
diagnosis, on the 15 April most of the material in the impact area is outside the search
area. Video S4 completes these conclusions.15

By the 8 October 2014 the Australia Transport Safety Bureau ATSB (2014b) re-
leased a flight path analysis update which indicated that the next underwater phase
of the search should be prioritized further south along the 7th arc, and thus a detailed
bathymetry was required, and efforts were initiated to obtain this for the zone depicted
in Fig. 6. A Lagrangian analysis of the horizontal motions at 2000 m depth confirms that20

at these depths, the currents are more calm than in upper layers, and consequently the
evolution of the impact contour does not spread so much at depth in the ocean. On
the other hand, this phase of the search is intended for heavier objects, whose motion
would be more gravity dominated than current dominated, and thus horizontal disper-
sion should not be large for these objects. Movie S5 and Fig. 6 confirm that the north25

and south bounds of the underwater impact area are the regions in which dispersion is
the largest.
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5 Conclusions

This work addresses, from the dynamical systems perspective, the fate of the MH370
plane debris after its presumed crash on the morning of the 8 March 2014. This point of
view provides a powerful tool for dealing with the difficulty arising from the uncertainty
of predictions, which comes from the fact that there are several data sets that de-5

fine multiple ocean states. The findings described in this paper highlight several facts
that could have been relevant to the search for debris associated with MH370. First,
we have shown that, according to several available data sources, impact debris from
the MH370 plane would have been mainly scattered into calm ocean regions since
the material from the likely impact areas tends to fill these areas. Second, mesoscale10

structures such as ocean eddies and jets may have played a key role in determining for-
bidden regions and barriers for debris. The consistency found between data obtained
from different and independent sources (AVISO, HYCOM, drifters) back the evidence
that the mesoscale structures we have described were present in the Indian Ocean dur-
ing the accident time frame, and that considering these structures could have guided15

an efficient search procedure. These facts also back the reliability of our dispersion
analysis, which would have suggested channeling efforts to regions disregarded from
scheduled search areas and bypassing certain regions that were subjected to intense
search.

The Supplement related to this article is available online at20

doi:10.5194/-15-1197-2015-supplement.
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Figure 1. Evaluation of the M function for AVISO data in the southern Indian Ocean on the
8 March 2014. (a) τ = 5 days; (b) τ = 20 days; (c) a countour plot of (b) highlighting the posi-
tion of visible invariant manifolds and a hyperbolic point; (d) a schematic representation of the
manifolds of (c) showing the particle evolution in the neighborhood; (e) tracer blob evolution in
a neighborhood of the crossing of the stable and unstable manifolds; (f) tracer blob evolution in
a neighborhood of a hyperbolic point and a elliptic (eddy-like) region.
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Figure 2. A summary of the debris search for the Malaysian MH370 plane in the southern Indian
Ocean. In the background the M function, evaluated on AVISO data for τ = 20 days, highlights
mesoscale structures and invariant manifolds. Overlapped are the drifters in the area (magenta
dots), the expected flight paths (white arrows), the likely impact area (pink) and its contour
evolution (gray). Dashed lines outline the search areas for the respective dates (a) 19 March
2014; (b) 27 March 2014.
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Figure 3. A summary of the debris search for the Malaysian MH370 plane in the southern Indian
Ocean. In the background the M function, evaluated on HYCOM data for τ = 15 days at 50 m
depth, highlights mesoscale structures and invariant manifolds. Overlapped are the drifters in
the area (magenta dots), the expected flight paths (white arrows), the likely impact area (pink)
and its contour evolution (gray). Dashed lines outline the search areas for the respective dates
(a) 19 March 2014; (b) 27 March 2014.
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Figure 4. A summary of the debris search for the Malaysian MH370 plane at the north of the
Broken Ridge in the Indian Ocean. In the background the M function, evaluated on AVISO data
for τ = 20 days, highlights mesoscale structures and invariant manifolds. Overlapped are the
drifters in the area (magenta dots), the likely impact area (pink) and its contour evolution (gray).
Dashed lines surround the search areas for the respective dates (a) 3 April 2014; (b) 15 April
2014.

1223

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/2/1197/2015/npgd-2-1197-2015-print.pdf
http://www.nonlin-processes-geophys-discuss.net/2/1197/2015/npgd-2-1197-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
2, 1197–1225, 2015

Lagrangian
descriptors and the
surface search for

MH370

V. J. García-Garrido et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 5. A summary of the debris search for the Malaysian MH370 plane at the north of the
Broken Ridge in the Indian Ocean. In the background the M function, evaluated on HYCOM
data for τ = 15 days at 50 m depth, highlights mesoscale structures and invariant manifolds.
Overlapped are the drifters in the area (magenta dots), the likely impact area (pink) and its
contour evolution (gray). Dashed lines surround the search areas for the respective dates (a)
3 April 2014; (b) 15 April 2014.
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Figure 6. The Lagrangian skeleton highlighted by theM function evaluated on HYCOM data for
τ = 15 days at 2000 m depth. Overlapped are the area in which the new bathymetry has been
constructed during the last months (green shaded), the likely impact area (pink) and its contour
evolution (gray) by the 15 April 2014.
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